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Probability Refresher I

1 Probability Refresher I
What is Logic? What is Probability Theory?
Logic is reasoning under certainty, Probability Theory is reasoning under uncertainty. In Logic we
can distinguish between descriptive and prescriptive approaches - in Probability Theory we distinguish
between the frequentist and the Bayesian view.
The two views in Probability Theory are different in how probabilities are to be interpreted: The frequen-
tist view interprets probabilities as limits of relative frequencies, while the Bayesian view interprets
probabilities as beliefs. This course will try to make the distinction between both views clear.

Figure 1: Source: http://xkcd.com/1132/

1.1 Games of Chance: Coin Toss & Thumbtack Toss
Coin Toss

Alice offers Bob a bet:

Let’s toss a coin. I will give you $2 whenever it shows heads. But each time it shows tails,
you will give me $3.
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Probability Refresher I

Should Bob accept? Let’s take Bob’s point of view and see.

x ∈ {0 = tails, 1 = heads}
If x = 1 : Alice gives Bob $2.
If x = 0 : Bob gives Alice $3.

If they play once, the money Bob gains equals: 2x − 3(1 − x), with x = 0 on tails or x = 1 for heads,
respectively. But since they will play n times Bob has to calculate the sum for n games:

1
n

n∑
i=1

(2xi − 3 (1− xi)) = 2
(

1
n

n∑
i=1

xi

)
− 3

(
1
n

n∑
i=1

(1− xi)
)

= 2
(

1
n

n∑
i=1

xi

)
− 3

(
1− 1

n

n∑
i=1

xi

)

Where 1
n

n∑
i=1

xi is the relative proportion of heads.

The expected value (read as: “Bob’s expected gain”) is, as can be seen above, E = 2p− 3(1− p), where
p is the probability of heads. p can now easily be expressed as:

lim
n→∞

(
1
n

n∑
i=1

xi

)
= p

But what shall Bob do now, where he has a formula to derive p? Basically he has two choices: Trying
out and tossing a coin n times or using his a priori belief and assigning a p. How he decides is the
difference between the frequentist and the Bayesian view. Eventually Bob sets p = 0.5 and inserts it into
the formula for the expected outcome. So Bob’s expected gain is E = 2 ·0.5−3(1−0.5) = −0.5[$]. Hence
Bob shouldn’t play.

Thumbtack Toss

Alice has another bet for Bob:

Let’s toss a thumbtack. I have heads, you have tails. You are allowed to choose your stakes,
but I have to agree on them to play.

What stakes should Bob choose? We will have a look at his situation again.

x ∈ {0 = tails, 1 = heads}

Figure 2: Thumbtacks - left: tails, right: heads. Source: http://blog.sls-construction.com/

The probability p is again:

lim
n→∞

(
1
n

n∑
i=1

xi

)
= p
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Probability Refresher I

What is different is Bob’s expected gain. He now has to consider the stakes as well.

E = s1p− s2(1− p)

s1 is Alice’s stake and s2 is Bob’s stake. To have a “fair” bet the expected gain should be zero. Bob uses
this knowledge to derive his stake.

E = s1p− s2(1− p)
0 = E ⇔ s1p = s2(1− p)

⇔ p

1− p = s2

s1

This last formula p
1−p = s2

s1
are the odds. If Bob fixes one stake and inserts p, he can calculate the other

stake needed for a fair bet. But again he has the problem of how to get to p.

Conclusion

To derive p you always have two possibilities: The frequentist view and the Bayesian view. The difference
is how we measure p:

• Frequentist: measure p as a property of the coin/thumbtack by throwing it n times

• Bayesian: measure p as a property of the “agent” (i.e. the decision-maker) by asking which bets
are “fair” for him/her

7



Probability Refresher II

2 Probability Refresher II
2.1 Rules of Probability
Assume a hat filled with cards. Each card has a red and a blue side, the red sides are labeled from 1 to
6 and blue sides from 1 to 4, resulting in 24 different cards. We can describe this sample space (or set
of all possible outcomes) Ω with

Ω = {[1, 1] , [1, 2] , ..., [6, 4]}

where [1, 2] represents the card with 1 on the red and 2 on the blue side.
To describe the following examples we first have to define some terms and relations.

• x ∈ Ω is the random variable x which can be drawn from Ω.

– Example: [1, 2], i.e. the card with a red 1 and a blue 2.

• |S| where S is a set is the number of elements in S.

– Example: | {1, 2} | = 2

• E ⊂ Ω is an Event E (something you can bet on).

– Example: Drawing a card with the number on the red site smaller than number on its blue
site.

How many events do we have? The number of events is simply 2|Ω| = 224 = 210 · 210 · 24 ≈ 16 Mio.
If we now put another [1, 1] card into the hat, the number of events stays the same, but the probabilities
change. This can be seen in the following table 1.

red
1 2 3 4 5 6

blue

1 2
25

1
25

1
25

1
25

1
25

1
25

2 1
25

1
25

1
25

1
25

1
25

1
25

3 1
25

1
25

1
25

1
25

1
25

1
25

4 1
25

1
25

1
25

1
25

1
25

1
25

Table 1: Probabilities of drawing a specific card from the hat

To get the probability of an event we just have to sum up the values in table 1. For example for the
event “The red number is smaller than the blue number”, let’s call it R < B, the probability P (R < B)
can be calculated as follows:

P (R < B) = P (R = 1, B = 2) + P (R = 1, B = 3) + P (R = 2, B = 3)
+ P (R = 1, B = 4) + P (R = 2, B = 4) + P (R = 3, B = 4)

= 6 · 1
25 = 6

25

2.2 Axioms of Probability
1. P ({}) = 0, P (Ω) = 1

The probability for the empty set is 0. The probability for any event to happen is 1.

2. ∀E : 0 ≤ P (E) ≤ 1
Probabilities are in the range from 0 to 1.

3. if E = E1 ∪ E2 and E1 ∩ E2 = {} then P (E) = P (E1 ∪ E2) = P (E1) + P (E2)
If two events don’t intersect their combined probability is the sum of their individual probabilities.

8



Probability Refresher II

3’. (follows from 3)
if E =

n⋃
i=1

Ei and ∀i,j;i 6=jEi ∩ Ej = {}

then P (E) = P

(
n⋃
i=1

Ei

)
=

n∑
i=1

P (Ei)
If n events don’t intersect their combined probability is the sum of their individual probabilities.

Note that we can calculate P for all events by adding up singleton events.

Other rules that follow

Figure 3: The intersection between two sets makes math a bit tricky

1. P (A ∪B) = P (A) + P (B)− P (A ∩B) = P (A \B) + P (A ∩B) + P (B \A)
The probability that one of two events happens is their individual probabilities minus the probability
that both events happen simultaneously (otherwise we would account for that case twice, see also
figure 3).

2. P (A ∪ ¬A) = P (Ω) = 1 = P (A) + P (¬A)
The probability that an event happens or not is 1.

3. P (A) = 1− P (¬A)
The probability of an event to not happen is 1 minus the probability of the event (and vice versa).

2.3 Random Variables & Joint Distribution
An example for a joint distribution: You roll two dice, one is six-sided and red, the other one is four-sided
and blue.

R: ΩR = {1, ..., 6} P (R = ω) = 1
6 ∀ ω ∈ ΩR

B: ΩB = {1, ..., 4} P (B = ω) = 1
4 ∀ ω ∈ ΩB

The joint sample space Ω is Ω = ΩR × ΩB .
Since R and B are independent the joint probability is P (R,B) = 1

24 for each value of R, B.
More formally speaking it holds that P (R = i, B = j) = 1

24 for all values of i, j since P (R,B) =
P (R) · P (B) for all independent R,B.

2.4 Marginal and Conditional Probability
For the following examples please refer to table 1 (page 8).

9



Probability Refresher II

Marginal Probability

The Marginal Probability for P (R = j) is:

P (R = j) =
{

5
25 if j = 1
4
25 else

This can be calculated by summing up one dimension of the table.

P (R = j) =
∑
i∈ΩB

P (R = j, B = i)

This can be written a bit more casual (here for B now):

P (B) =
∑
R

P (R,B) =
{

7
25 if B = 1
6
25 else

Conditional Probability

In case a card was picked and we already know what number the red side shows, P (R,B) 6= P (R) ·P (B)
is not independent. P (R,B) is now dependent on the already known red number.
The probabilities that follow are:

P (B|R = 1) =
{

2
5 if B = 1
1
5 else

P (B|R = 2, ..., 6) = 1
4

The conditional probability P (A|B) (read: P of A given B) can be expressed as follows:

P (A|B) = P (A,B)∑
A

P (A,B) = P (A,B)
P (B)

where
P (A,B) is the joint pobability∑

A

P (A,B) is the marginal probability

P (A,B) is a function of A (because B is fixed)
P (B) is the renorm

With the product rule P (A|B)P (B) = P (A,B) = P (B|A)P (A) we can derive Bayes’ rule:

P (B|A) = P (A|B)P (B)
P (A) = P (A|B)P (B)∑

B

P (A|B)P (B)

where we call
P (B|A) posterior
P (A|B) likelihood
P (B) prior
P (A) evidence

10



Measuring Beliefs I

3 Measuring Beliefs I
3.1 Probability as Belief
We can measure probabilities for recurring events, how can we measure probabilities for unique events?
Unique events are for example:

• How sure are people which population is bigger, the EU or the US population?

• How can bookmakers set the odds for soccer games?

• How high is the probability for a nuclear reactor to blow up?

The frequentist view is not really helpful here: Since those events don’t appear numerous times, you can
not measure any limits of relative frequencies. But the Bayesian view helps us to use the same math to
determine these probabilities.

3.2 What do you accept as a fair bet?

Figure 4: A horse race ticket. Source: Reuben Goossens, ssmaritime.com

Let’s assume for the next examples that people are honest (Otherwise they would lie to win).
Assume you have a ticket you can exchange for $1 if A happens, otherwise it’s worth nothing.

Ticket =
{

$1 if A
$0 else

What would be a fair price for that ticket?

($1− c)P (A)− cP (¬A) = 0
⇔ P (A) = c

Coherence (fair pricing)

1. P (certain) = 1, P (impossible) = 0

2. ∀A 0 ≤ P (A) ≤ 1

3. P (A ∩B) = {} → P (A ∪B) = P (A) + P (B)

11



Measuring Beliefs I

These rules follow from some logical thoughts.
Imagine P (A) +P (¬A) > 1. Then the bookmaker would make money and the bet wasn’t fair. If you are
not the bookmaker, you want to have something like P (A) + P (¬A) < 1.
Another case is A ∩ B = {}, i.e. A and B are mutually exclusive. Then you want to buy P (A) + P (B)
but sell P (A ∪B) if P (A) + P (B) < P (A ∪B).

3.3 Conditional Bets
If we don’t have repeatable events, how can we justify conditional probabilities?
Assume a ticket again, this time of the following form:

Ticket =


$1 if A ∩B
$c if ¬B(refund)
$0 else

A is dependent on B now.

P (A|B) = P (A ∩B) + P (¬B)P (A|B)

1 = P (A ∩B)
P (A|B) + 1− P (B)

P (B) = P (A ∩B)
P (A|B)

P (A|B)P (B) = P (A ∩B)

P (A|B) = P (A ∩B)
P (B)

Philosophical differences matter
Alice has two coins, coin 1 with a probability of 0.5 for heads and tails, coin 2 with probability 0.4 for
heads (and 0.6 for tails).
She chooses a coin and tells Bob she would flip it n times now. Then Bob has to guess which coin she
flipped.
Bob has two hypotheses, one for each coin. To check his hypotheses, he can now use the data (i.e. the n
coin flips) and calculate the probabilities for his hypotheses - then he can compare those and choose the
one with higher probability.

P (H|D) = P (D|H)P (H)
P (D)

(with H = Hypothesis, D = Data)

Calibration and Coherence
Note: In short: Being ill-ca-
librated means you lose money
on average, while being incoher-
ent means you lose it.

Note that there is a difference between coherence and calibration. You
are well calibrated if you answer according to your real beliefs and
knowledge. For example if you play Roulette you do bet although you
know that you can lose because of the 0, so you are not well calibrated
(a well calibrated person in that case would not play). Being coherent means that you follow the rules
of probability, for example that you don’t trip into the conjunction fallacy trap (see the chapter about
“Conditional Bets” above).

12



Measuring Beliefs II

4 Measuring Beliefs II
4.1 Probabilities of Continuous Random Variables
How tall is Frank Jäkel? 1.80m, 1.70m, 1.68m, 1.69m, or even 1.7034241m?
Not only are there problems with real numbers like 1.7034241, but also with the question the Bayesian
view inevitably asks: “What do you think is the probability for that size?”
One sees: continuous random variables are difficult. There is an infinite uncountable range of numbers
and one shall assign probabilities for them. This leads straight to the question: “What’s the probability
of a real number?”
In the following section this problem gets tackled in three ways.

4.1.1 Solution 1: Histograms (Probability Density Function, PDF)

The first and naive way is to discretize the sample space R into bins and assign probabilities to those
bins (figure 5).

1.4 1.5 1.6 1.7 1.8 1.9
height in m

0
2.5
5

7.5
10

de
ns
ity

10% 70% 20%

Figure 5: Histogram

Note that the area describes the probability. For the second box, one would assign a y-value of 7,
such that the width (0.1) times the height equals the probability (0.1 · 7 = 0.7).
For a finer granularity one can now change the resolution of the bins and split the probabilities among
them (figure 6.

1.4 1.5 1.6 1.7 1.8 1.9
height in m

0
2.5
5

7.5
10

de
ns
ity

10% 70% 20%

2.5%
7.5%

25%
45%

11%
9%

Figure 6: Histogram with higher resolution

Extreme cases Usually this will yield a nice distribution of how beliefs are. However, there are two
special extreme cases.

The first case is that all values are equally probable: Since we have infinitely many values on the
real number line, the probability for each individual value is 1

n ⇒ lim
n→∞

1
n = 0.

The second case is that the full probability gets assigned to one single value. Since a single value
has the width 0, again the probability will become 0 for all values.

The probability density function However, if the resulting histogram is somewhere between those
extreme cases, then the limit of the distribution yields the probability density function (figure 7).
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1.4 1.5 1.6 1.7 1.8 1.9
height in m

0
2.5
5

7.5
10

de
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ity

Figure 7: Probability density function

As mentioned before it’s still not possible to calculate the probability of a specific number. What is
possible though, is calculating the probability of an interval. This is useful, since people always bet on
intervals. For instance, betting on “2” means to bet on the interval [2, 3[.

4.1.2 Solution 2: Cumulative Density Function, CDF

To calculate the probability of an interval it’s possible to simply sum up all probabilities in the specific
interval.
This can be done by integration of the PDF (see figure 8).

1.4 1.5 1.6 1.7 1.8 1.9
height in m

0
0.25
0.5

0.75
1

de
ns
ity

Figure 8: Cumulative density function

4.1.3 Solution 3: Parametric Distribution

The only remaining problem is deriving the correct probability density function. We can avoid this by
using a very common statistics method and model the PDF as a Gaussian distribution.
This way we reduce the problem finding the correct function to finding the correct parameters.

The Gaussian distribution (see figure 9) is defined as

p(X = x) = 1
2πσ2 e

− 1
2 (µ−x

σ )2
= φ(x;µ, σ) = φ

(
µ− x
σ

; 0, 1
)

µ− x
σ

= z

The corresponding integral is Φ (see figure 9).

P (X ≤ t) =
t∫

−∞

p(X = x)dx = Φ(t;µ, σ)

The area of the standard deviation (µ − σ ≤ X ≤ µ + σ) has a probability of approximately 68 % (see
figure 10).

P (µ− σ ≤ X ≤ µ+ σ) = Φ(µ+ σ;µ, σ)− Φ(µ− σ;µ, σ) ≈ 68%

14
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−4 −2 0 2 40

0.2

0.4

0.6

0.8 µ = 0, σ = 0.5
µ = 0, σ = 1
µ = 0, σ = 2
µ = 1, σ = 1

−4 −2 0 2 40

0.2

0.4

0.6

0.8

1

µ = 0, σ = 0.5
µ = 0, σ = 1
µ = 0, σ = 1
µ = 1, σ = 1

Figure 9: Left: Gaussian distributions. Right: Their corresponding integrals. Parameters: µ = 0 and
σ = 0.5, 1, 2, and µ = 1, σ = 1.

−4 −2 0 2 40

0.1

0.2

0.3

0.4 ≈ 68%
µ = 0, σ = 1

Figure 10: The area of the standard deviation yields approximately 68 %

We can also find other useful probabilities which are commonly used to do statistics:

• µ± σ ≈ 68%

• µ± 2σ ≈ 95%

• µ± 3σ ≈ 99%

4.2 Proper Scoring Rules
Multiple choice tests would be better if you would state “how your belief is, that this is right”, rather
than just answering the question (For more about this see page 17).

Take a look at this example:
The EU population is bigger than the US population.
Give the belief for this to be true.
(This means 0 = “I believe this is false”, 1 = “I believe this is true”, 0.5 = “I don’t know”)

The aim of a proper scoring rule is to yield a high gain (a minimum loss) if the answer is true and the
belief in it is high, but yield no gain if the answer is false but the belief in it high.
In the loss-function L given below q is the belief assigned to the answer given and X is 1 if the statement
was true or 0 if it was false.

L (X, q) = (X − q)2

= X2 − 2qX + q2 (note: X2 = X, since only 0 or 1)
= X (1− 2q) + q2

15



Measuring Beliefs II

Penalty for lying

If we now assume the subject is not stating her actual belief p, but another value q (p 6= q), the formula
changes in the following way:

E (L (p, q)) = p− 2pq + q2 =
(
p− p2)+

(
p2 − 2pq + q2)

= p (1− p)︸ ︷︷ ︸
basic loss

+ (p− q)2︸ ︷︷ ︸
penalty for lying

Note that the basic loss is maximal if the subject has no clue (p = 0.5).

How to answer?

If one’s belief is p, which q will yield the best gain (i.e. will minimize the expected loss)?
To answer this the expected loss function can be minimized, i.e. one can search the first derivative and
set it to zero.

E (L (p, q)) = p (1− 2q) + q2

∂E (L (p, q))
∂q

= −2p+ 2q

→ 0 = −2p+ 2q
⇔ p = q

As can be seen the loss function is minimal if p = q, i.e. if the person answering is telling the truth.
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5 Bayesian Inference Examples
This section is basically about Exercise 4 on the 4th Tutorial Sheet (see page ??). The idea is that we
have a multiple choice test where the answers are not simply true or false but can be any value between
0 and 1 representing your belief in this statement to be true (where 0 corresponds to your belief in this
statement being false, 1 that you belief it’s true). What does a proper scoring do in this example? What
is calibration?

5.1 Honesty
If we use a proper scoring rule the participant can minimize her error if she always states her honest
belief in the statement. It is obvious that this does not help in getting any points for statements where
you have no clue about its real truth value and you can still get lucky if you gamble and just guess a
value for a statement.
But for a huge number of questions it is highly unlikely that you gain anything and we proved in the
other exercises that it is optimal to state your true belief.

5.2 Calibration
If you are well-calibrated then 80% of the statements you marked with 80% should be true. Calibration
is the bridge between frequentist and Bayesian view on this topic. Calibration can only be measured if
you have a huge enough sample space, which is not often the case since you have rather twenty than two
hundred questions.
Afterwards it is not possible (in our setup) to tell whether wrong answers are due to lying or bad
calibration. There is another problem: It is very hard for a normal person to be well calibrated (even
if they try). Psychological studies show that most people systematically overestimate their own belief.
Meaning that they would write 1 where their true belief is rather 0.92.
People also overestimate small probabilities. For example, people think that it is rather likely to die in a
plane crash than in a car accident, although this is rather unlikely compared to car accidents. One could
take such studies into account and try to come up with correction terms for the common failures, but
this is rather complicated. This is part of the reason why these proper scoring or multiple choice tests of
this form are not widely used. The other reason is that not many people know about this stuff and the
effect is not that great to even start with all the trouble.
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6 Frequentist Inference Examples
6.1 Bayesian Inference for Thumbtacks
We return to the example from the first lecture (see page 6). Let us imagine we have thrown a thumbtack
n times. The series of data we get from that may be: 01110101101, a binary string consisting of n entries
(0 encodes tail, 1 head). Let x1....xn =: X be a random variable. What is the probability of the data
given our vague belief about q (for a coin we have the strong intuition of believing that q = 0.5, but for
the thumbtack we are not sure)? The probability of the whole data (X) is the product of the probability
of all single events (xi):

P (X|q) =
n∏
i=1

qxi (1− q)1−xi︸ ︷︷ ︸
Bernoulli

= qh (1− q)t

h: #heads t: #tails
But since we do not know q we would also like to find the best q that explains the observed data. In
other words: what is the probability of a specific q given the data? This can again be expressed with
Bayes’ Rule:

posterior︷ ︸︸ ︷
p(q|X) = P (X|q)

prior︷︸︸︷
p(q)∫ 1

0 P (X|q)p(q)dq

Note: α, β ∈ N+: B(α, β) =
(α−1)!(β−1)!

(α+β−1)!

The question arising here is what shall we take as the prior? In principle
it is just our personal belief about the thumbtack, one experimenter
might believe it is 0.7, others believe different values. This subjectivity
troubles many Non-Bayesians. The good thing is, that it does not really matter which prior you choose,
if you have enough data the result will still converge to the real p(q|X)!
Since we have no concrete clue and it is not that important anyway, we may choose a distribution by
pure convenience for p(q). The distribution is called β Distribution :

p(q) = qα−1(1− q)β−1∫ 1
0 q

α−1(1− q)β−1dq
= qα−1(1− q)β−1

B(α, β)

We can now neglect the normalization term in the original p(q|X). So we get rid of the integral in the
denominator, since it is independent of q.

p(q|X) ∝ qh(1− q)t︸ ︷︷ ︸
P (X|q)

qα−1(1− q)β−1︸ ︷︷ ︸
p(q)

= qh+α−1(1− q)t+β−1︸ ︷︷ ︸
new β-distribution

If we now choose αn = h+ α, βn = t+ β, we can express the new β Distribution as:

p(q|X) = qαn−1(1− q)βn−1

B(αn, βn)

If the prior and posterior have the same distribution (like in this case) they are called conjugate.

6.2 Map estimate (maximum a posteriori)
In order to find the maximum posteriori term we need to calculate the first derivative of p(q|X). That
seems quite hard but we can reduce the problem by ignoring the normalization term 1

B(αn,βn) (since it is
independent from q) and taking the logarithm of the numerator, since this does not change the location
of any maxima. By this we just have to maximize log(qαn−1(1− q)βn − 1).
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log
(
qαn−1(1− q)βn−1) = (αn − 1) log q̂ + (βn − 1) log(1− q̂)

∂ ((αn − 1) log q̂ + (βn − 1) log (1− q̂))
∂q̂

= αn − 1
q̂

− βn − 1
1− q̂ = 0

αn − 1
q̂

= βn − 1
1− q̂ ⇔

1− q̂
q̂

= βn − 1
αn − 1

1
q̂

= βn − 1
αn − 1 + 1 = βn − 1

αn − 1 + αn − 1
αn − 1 = βn + αn − 2

αn − 1

q̂ = αn − 1
βn + αn − 2 = α+ h− 1

α+ β + h+ t− 2

Note: The approach of using Bayes-
ian statistics with a prior that does
not assume or put in any informa-
tion is called ’Objective Bayes’. It is
somehow the middle ground between
the two opposing camps.

For α = β = 1 we get what we have already suspected before:
q̂ = h

h+t . α and β are also called pseudo-counters. They represent
data points you have not seen but believe to be realistic. This is a
way to put your prior belief about the problem in the model - but
it is also dangerous. If you have a strong belief in a hypothesis it
will need more and more data to prove in the limit that you are
wrong.

6.3 NHST Null Hypothesis Significance Testing
In the previous section we examined how Bayesian people tackle the problem of finding a good model
for a problem. For frequentists it is a bit more complicated. Remember that probabilities (like the
probability for heads for a fair coin) are objective/fixed properties of the object. Writing p(q) (as well as
p(q|X) ∝ p(q)p(X|q)) makes no sense for this reason. q is not a random variable but a property and we
need to find out its concrete value.

Experiment: Can someone discriminate between coke and pepsi?

Note: This section is wrong
and needs to be updated!

We would like to know what p(q) is. But as frequentists we can’t do
that. So we start with the null hypothesis H0: Subjects can’t discrimi-
nate: q = 1

2 , n = 25. Where q denotes the discrimination factor for the subjects and n is the number of
trials. We now measure H (# “Heads”: correct discriminations).

P (H = h|q) =
(
n

h

)
qh(1− q)n−h︸ ︷︷ ︸

Binomial distribution

Note: Obviously WIP!Now we introduce a criterion: subjects can discriminate if they get >20
correct answers. In that case you reject the null hypothesis.

0 5 10 15 20 25

2
4
6
8

·10−2

Figure 11: The corresponding Gaussian
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P

(
H = h|q = 1

2 , n = 25
)

P

(
H > 20|q = 1

2 , n = 25
)

(p-Value)

α is the signal level → type I error rate that’s acceptable (usually 5%). This is the probability that you
say there is an effect even if there is none.
say q = 4

5

0 5 10 15 20 25

β ≈ 3
4

type II error β ≈ 3
4

tradeoff between α and β: “easier” for q → 1
2 for n big: the power is 1− β.
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7 Signal Detection Theory I
7.1 Detection tasks
Detection tasks are simple yes/no response tasks. Yes and no corresponds most of the time to the
existence or absence of a signal. The difficulty of such a task stems from the fact that there is always
noise in the system, so we can’t be sure whether or not the given answer is correct.

7.1.1 Examples

• Binary signal transmission over noise channel (cable, radio)

• Information retrieval

• airport security scans (is this a weapon or just a hair dryer)

The results of one single trial in such an experiment may take one of the values from the following table:

XXXXXXXXXXResponse
Signal S = yes S = no

R = yes Hit False Alarm
R = no Miss Correct Rejection

The probabilities to get a certain response given the existence of a signal may look like the following
pdf’s:

5 10 15 200

5

10

15

20

25

P(X|S=yes)
P(X|S=no)

7.1.2 Response strategy

We are now looking for a set of values for which our response will be yes. This is called the response
strategy. It somehow determines from what signal strength onward you would report the signal was
there. Formally: if x ∈ A then YES else NO. Our response strategy should not only depend on the
probabilities, but also on the cost of being wrong. The loss function L(S,R) depends now on the costs
for the different cases.

XXXXXXXXXXResponse
Signal S = yes S = no

R = yes CH CFA

R = no CM CCR
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The probabilities for Hit and false Alarm are the integrals over the pdf’s.

P (H) =
∫
A

p(X | S = yes)dx = P (R = y | S = y)

P (FA) =
∫
A

p(X | S = no)dx = P (R = y | S = n)

The probabilities for miss and correct response can be directly computed from these.

P (M) = 1− P (H) = P (R = n | S = y)
P (CR) = 1− P (FA) = P (R = n | S = n)

7.1.3 Minimize expected loss

As with the proper scoring rules we want to give responses in order to minimize our expected loss for
certain costs.

E(L(S = y,R)) = P (H) · CH + P (M)︸ ︷︷ ︸
1−P (H)

·CM

E(L(S = n,R)) = P (FA) · CFA + P (CR)︸ ︷︷ ︸
1−P (FA)

·CCR

In the following we use this shorthand notation:

πy = P (S = y)
πn = P (S = n)

E(L(S,R)) = πyE(L(S = y,R)) + πnE(L(S = n,R))
= πyCHP (H) + πyCM − πyCMP (H) + πnCCR − πnCCRP (FA) + πnCFAP (FA)
= πyP (H)(CH − CM ) + πnP (FA)(CFA − CCR) + (πyCM + πnCCR)︸ ︷︷ ︸

independent of A

Now we minimize only the parts dependent on A.

πyP (H)(CH − CM ) + πnP (FA)(CFA − CCR)

= πy

(∫
A

p(X | S = yes)dx
)

(CH − CM ) + πn

(∫
A

p(X | S = no)dx
)

(CFA − CCR)

=
∫
A

[πyp(X | S = yes)(CH − CM ) + πnp(X | S = no)(CFA − CCR)dx]

Choose A such that we only integrate over the negative part.

πyp(X | S = yes)(CH − CM ) + πnp(X | S = no)(CFA − CCR) < 0
πyp(X | S = yes)(CH − CM ) ≤ −πnp(X | S = no)(CFA − CCR)
πyp(X | S = yes)(CH − CM ) ≤ πnp(X | S = no)(CCR − CFA)
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πyp(X | S = yes)
πnp(X | S = no)︸ ︷︷ ︸

posterior odds

≥ CCR − CFA
CH − CM︸ ︷︷ ︸

costs threshold

Interpretation: We choose A so that the posterior odds are greater then the costs.
Other way of writing:

p(X | S = yes)
p(X | S = no)︸ ︷︷ ︸

likelihood ratio

≥ πn(CCR − CFA)
πy(CH − CM )︸ ︷︷ ︸

β

7.1.4 Use Gaussians for modelling

We can model the probability of Hits and False Alarms with Gaussians respectively:

P (X|s = yes) = 1√
2πσ2

· e−
1
2

(x−µy)2

σ2

P (X|s = no) = 1√
2πσ2

· e−
1
2

(x−µn)2

σ2

This is not easy to calculate, so we simplify by applying the log thereby obtaining the log-likelihood ratio
and compare that to our previous calculated β:

− 1
2σ2 ·

[
(x− µy)2 − (x− µn)2

]
≥ log (β)

x2 − 2xµy + µ2
y − x2 + 2xµn − µ2

n ≤ −2σ2 · log (β)
2x (µn − µy) + µ2

y − µ2
n ≤ −2σ2 · log (β)

By convention the mean of the noise distribution µn is smaller than µy, such that by solving for x and
dividing by (µn − µy) the inequality turns and we get:

x ≥
−2σ2 · log (β) + µ2

n − µ2
y

2 (µn − µy)︸ ︷︷ ︸
Θ

That we can interpret such that we answer with yes in the case the x we perceive is bigger than the
threshold (criterion) Θ. In the case of β = 1 and equal prior probabilities that means:

x ≥ (µn − µy) · (µn + µy)
2 (µn − µy) = (µn + µy)

2

i.e. the best threshold is just in the middle of the two Gaussians, given the condition that both Gaussians
have the same variance.
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7.2 Signal to Noise Ratio
Now we want to find the limits of perception - how few light can we detect, or in other words: What
is a persons signal to noise ratio for light detection. For the case where we again assume two Gaussian
distributions with equal deviation, the signal to noise ratio is defined as:

SNR = µy − µn
σ

As we care for the actual perception (the distance of the Gaussians) of a subject and not his decision-
criterion when to say yes, we have to come up with a measure independent of the subjects threshold.
Receiver operator characteristics (ROC) allow for that by systematically varying the threshold, such that
all possible criteria are covered (from always saying yes, to always saying no). Then we get a curve
describing the perception of a subject independently of his criteria.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

P(FA)

P(
H
)

ROC

Varying the threshold may be achieved by the experimenter, by manipulating the costs and pay-offs for
False Alarms or Hits. Note that the above depicted graph is a theoretical model. In a real experiment
we would get single data points, scattered around such a curve. The further left we get on the P (FA)
axis, the further right the subject placed her criterion.
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8 Signal Detection Theory II
8.1 Objective Sensitivity
In the previous lecture we saw how ROC curves helped us to measure the sensitivity of a subject in a
decision task. We could compare the curves for several subjects and find out which one has the ’better’
sensitivity.

0 0.2 0.4 0.6 0.8 10

0.2

0.4
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0.8

1

P(FA)

P(
H
)

Figure 12: ROC-Curve

But it would be better to have a single value to compare the sensitivity. For the case where signal and
noise are Gaussians with same variance this value is the SNR (Signal to Noise Ratio). We can calculate
that!

First we subtract the mean of the No-responses to make it zero-centered.

p(FA) =
∫ ∞
θ

ϕ (x, µn, σ) dx = 1− Φ (θ, xn, σ)

= 1− Φ (θ − µn, 0, σ)

p(H) =
∫ ∞

0
ϕ (x, µy, σ) dx = 1− Φ (θ, xy, σ)

= 1− Φ (θ − µn, µy − µn, σ)

We may also adapt on the deviation by dividing through σ, thus arriving on a Gaussian with variance
σ2 = 1 and mean µ = 0 in statistics this is called standardising or normalising.

p(FA) = 1− Φ
(
θ − µn
σ

, 0, 1
)

= 1− Φ (θ′)

p(H) = 1− Φ
(
θ − µn
σ

,
µy − µn

σ
, 1
)

= 1− Φ (θ′ − d′, 0, 1)

= 1− Φ (θ′ − d′)

d′ = µy − µn
σ
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We can rearrange the formula for P (FA) to:

Φ (θ′) = 1− P (FA)
θ′ = Φ−1 (1− P (FA))

= −Φ−1 (P (FA))

The last step is possible because the Gaussian is symmetric. Now we try to find a formula for d′ as well.

Φ (θ′ − d′) = 1− P (H)
θ′ − d′ = Φ−1 (1− P (H))

d′ = θ′ + Φ−1 (P (H))
= Φ−1 (P (H))− Φ−1 (P (FA))

By this we disentangled the sensitivity and the response bias of the subject. θ is rather a bias than a
threshold.

8.2 Is there a sensory threshold?
A long time ago, people thought that our sensors work in a 0-1 like manner. There is an internal
threshold and either the signal is strong enough to surpass this threshold or not. Detection experiments
were conducted to find that threshold of consciousness.
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=
y|
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(a) Model of a Sensory Threshold
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θ
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P(
D
=
y|
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(b) The Real Data

Figure 13: Prediction of the Threshold-Theory

As seen in the plots, the real data that was measured does not really fit the model. Two reasons could
explain this difference. First of all there could be noise in the threshold (depending on some hidden
neuron mechanisms). Another explanation could be noise in the stimulus.

The function P (D = y|S = s) = Fθ(s), Fθ(θ) = 1
2 is called the psychometric function. This is all fine, as

long as the subject is honest and not lying about her sensation (R is the response and D is whether the
subject detected the stimulus):

P (R = y|D = y) = P (R = n|D = n) = 1

To measure the subjects honesty we introduce catch-trials! For 50% of the trials we have a stimulus and
for the other half we do not. Our model for the subject may be:

P (R = y|D = y) = 1
P (R = y|D = n) = q
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So the subject only lies when she detected nothing with a certain probability. The probability for hit(H)
and false alarm (FA) is therefore:

P (H) = P (D = y|S = s) · 1 + (1− P (D = y|S = s)) · q
= q + (1− q)P (D = y|S = s)
= q + (1− q)Fθ(s)
= P (FA) + (1− P (FA))Fθ(s)

P (FA) = P (D = y|s = 0) · 1 + (1− P (D = y|s = 0)) · q
= q + (1− q)P (D = y|s = 0)
= q

We assume that we have a high threshold so that P (D = y|s = 0) ≈ 0. If we solve the first equation for
Fθ(s), we get:

Fθ(s) = P (H)− P (FA)
1− P (FA)

Since we know from the psychometric that for θ this equation should be 1
2 we can find θ!

8.3 Why High Threshold Theory is wrong!
1. ROC-Curves

If HT-Theory would be right, the ROC-Curves would be straight lines and not curves. But we get curves
from the real data.

2. Relation between Y-N and 2-AFC

In a Y-N experiment I may state for each frame if there was a stimulus (Y) or not (N). In 2-AFC the
subject sees 2 frames and has to decide in which frame the stimulus was. If we did not see the stimulus
we have a 50% chance to get the answer right. The probability of a correct answer should be:

P (H) = Fθ(s) + (1− Fθ(s)) ·
1
2

= 1
2 + 1

2Fθ(s)

Fθ(s) = 2P (H)− 1

But these formulas do not match up with the real data.

3. 2ndChoice in 4-AFC Task

In this case the difference becomes even more obvious. In the experiment you have 4 screens where the
stimulus could appear on. If you got it wrong on the first try you may choose again. In HT-Theory one
can expect that the chance to get it right in the second round should be 1

3 , because I saw nothing on
those screens. But in reality the data shows that people are way better than 1

3 !

4. Rating Data

This experiment has been conducted with Y-N tasks with 50% catch trials.The subjects should always
rate their answers on a scale from 1 (unsure) to 5 (super sure). Results show that people seem to be able
to rate how sure they are about their perception. And this rating fits the data very well. HT-Theory can
not account for this, since there are only all-or-none responses.
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9 Signal Detection Theory III
9.1 From YN to 2AFC
In comparison to simple Yes-No-task there exists an alternative task design which is the 2-Alternative-
Forced-Choice-task. In each trial the subject is presented with two intervals with a light stimulus in one
of it, therefore there are two “stimulations” X1 and X2. The subject is then forced to state in which
interval the stimulus appeared. By this we get a probability distribution for the stimulation in each
interval. The probabilities for this experiment are given in the following.

(X1|S = 1) ∼ N
(
∆µ, σ2)

(X2|S = 1) ∼ N
(
0, σ2)

(X1|S = 2) ∼ N
(
0, σ2)

(X2|S = 2) ∼ N
(
∆µ, σ2)

We are using again the same Gaussian’s with different means. This is also referred to as equal variance
signal detection model and may be plotted like this:

0 ∆µ

S=
1

2ndinterval 1stinterval

0 ∆µ

S=
2

1stinterval 2ndinterval

Figure 14: Mean-shifted Gaussian distributions

If the stimulus was presented in the 1st interval X2 (our sensation for the 2nd interval) is so to say the
noise distribution and the other way around if the stimulus is shown in the 2nd interval. If we now choose
the variables X1 and X2 as the axis we get the following plot:

X2

X1

S=1

S=2
decision boundary

Figure 15: The distance between the two distributions is
√

2∆µ.
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If we could discriminate perfectly our data points would lie on the x or y axis for each trial (depending
on the interval). When we discussed why HT-Theory is wrong (8.3), we already stated that subjects
perform better in 2AFC than in YN-Tasks. Now we see why: the distance of the two distributions is
∆µ2AFC =

√
2∆µ. This is > ∆µ! The strategy for the best performance in 2AFC is the following:

• Say 1 if X1 > X2

• Say 2 if X2 ≥ X1

We see that ∆X = X2 −X1
!
> 0. What is now the distribution of ∆X? Note that if you scale or add

normal distributions you always get again a normal distribution with scaled standard deviations and
means and added variances and means.

(∆X|S = 1) ∼ N
(
0, σ2)−N (∆µ, 2σ2) = N

(
−∆µ, 2σ2)

(∆X|S = 2) ∼ N
(
∆µ, σ2)−N (0, 2σ2) = N

(
∆µ, 2σ2)

We may now calculate the Signal to Noise Ratio of this two distributions.

−∆µ ∆µ

S=1 S=2

SNR = ∆µ− (−∆µ)√
2σ2

= 2∆µ√
2σ

=
√

2∆µ (same result as in the geometric solution)

9.2 Cue Combination
Ernst & Banks (2002): Visio-haptic cue combination

The task in this experiment is to judge the size of a bar when you can see and feel it. Your two
measurements of s may be defined as the following:

V ∼ N
(
s, σ2

V

)
H ∼ N

(
s, σ2

H

)
In this is example it is not wise to choose the same distribution for both measurements, since we would
expect that our visual system is more accurate than the haptic one (imagine s = 2cm, figure 16).
Different than in the 2AFC the two distributions have the same mean – leading to the plot in figure 17.
Given the length of the bar (s) this is the probability for our haptic (h) and visual (v) impression:

p (V = v;H = h|s) = 1√
2πσV

e
− 1

2

(
v−s
σV

)2 1√
2πσH

e
− 1

2

(
h−s
σH

)2

Together with the log-likelihood we can calculate a ML-Estimate ŝ for s:

⇒ −1
2

((
v − ŝ
σV

)2
+
(
h− ŝ
σH

)2
)

= −1
2

(
v − ŝ
σV

)2
− 1

2

(
h− ŝ
σH

)2
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Figure 16: The visual system is more accurate than the haptic, thus the normal distribution of the visual
system has a smaller variance.

(s, s)sVision

s
Haptics

Figure 17: Vision and haptic systems’ distributions have the same mean.

Use first derivative: (
v − ŝ
σV

)
2

2σV
+
(
h− ŝ
σH

)
2

2σH
!= 0

⇔ v − ŝ
σ2
V

+ h− ŝ
σ2
H

= 0

⇔ v

σ2
V

+ h

σ2
H

− ŝ
(

1
σ2
V

+ 1
σ2
H

)
= 0

⇔ v

σ2
V

+ h

σ2
H

= ŝ

(
1
σ2
V

+ 1
σ2
H

)
⇔ ŝ =

(
v

σ2
V

+ h

σ2
H

)
σ2
V σ

2
H

σ2
V + σ2

H

⇔ ŝ = vσ2
H

σ2
V + σ2

H

+ hσ2
V

σ2
V + σ2

H

This estimate seems logical, since the variances are used as a normalization term in the denominator and
the numerator weights our sensation according to their internal variance. In our example we assumed the
visual system to have a small variance compared to the haptic system, so the v has greater impact on ŝ.
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Pizza Margarita
Pizza Salami

Figure 19: Red: Pizza margarita is quite popular among all subjects. Green: Pizza salami is not that
popular among subjects, it has a higher variance.

10 Choice Models I
Utility

Figure 18: Pizzaaaa!

The utility is the variability in choices. It can either refer to the variabil-
ity in choices of several subjects (“How many subjects prefer pizza tonno
over pizza salami?”) or the variability in choices of a single subject over
time (“On how many days prefers the subject pizza tonno over pizza
salami?”). A utility of e.g. 70% means that a subject chooses pizza
tonno over pizza salami in 70 out of 100 times it’s asked.
With choice models we try to find the utility of possible choices in order
to make accurate predictions.
Note that there might be polarizing options, this means the variance
changes. For example pizza margarita might be very popular, so many
people like it thus the variance for a choice of pizza margarita gets
smaller. However, pizza salami might be less popular and therefor its utility’s variance is wider (see
figure 19).
Since the utility is dependent on the choice to made, there can only be relative utilities.

10.1 Paired Comparison Experiment
A very common technique to check whether subjects prefer an option over another is a paired comparison
experiment. Subjects are shown all possible pairs and say for each pair which option they prefer. This
results in a matrix where we can find out which options are more popular than others. See table 2 for
an example.

Two options

Note: To make it easier to un-
derstand the math we will as-
sume equal variance for given
options unless noted otherwise.

Assume we ask a subject to make a choice between two options. We
consider two options i and j with the random variables xi and xj as
their utilities (the subject’s utilities for each option respectively) with
xi ∼ N (µi, 1) and xj ∼ N (µj , 1). The subject “computes” ∆xij =
xi − xj if ∆xij > 0 (otherwise we would need ∆xji). ∆xij is also
normal distributed, i.e. ∆xij ∼ N (µi − µj , 2). ∆xij is the distribution of how likely it is, that the
subject chooses i over j. A visualization of this can be found in figure 20.
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Table 2: Example paired comparison outcome. In this example we assume we asked 60 subjects, hence
the denominator.
For computations we often set the diagonal (compare each option with itself) to 1

2 , which means there is
no preference – this already makes sense intuitively.
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Figure 20: Relation of xi, xj and ∆xij . Left: two options with equal variance. Right: two options with
different variances. Note that the variances add up, hence ∆xij gets flat and wide.
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Figure 21: ∆xij : If we know this area A, we can guess ∆µij .
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Figure 22: Φ(x) = 1− Φ(−x)

Definitions

We define:

• dij = µi − µj

• pij is the probability that the subject chooses i over j.

• Pij = 1− Pji = 1− Φ(dij ; 0,
√

2) = 1− Φ(−dij ; 0,
√

2) z-tf.= 1− Φ
(
−dij√2 ; 0, 1

)
Figure 22 shows visually that Φ(x) = 1−Φ(−x), so we can write 1−Φ

(
−dij√2 ; 0, 1

)
= Φ

(
dij√

2 ; 0, 1
)
.

To further simplify the notation we just write Φ
(
dij√

2

)
.

• qij

Optimizing Paired Comparison Experiment

We search for an estimate of dij . We can use qij = Φ
(
d̂ij√

2

)
and derive Φ−1 (qij) = d̂ij√

2 ⇔
√

2Φ−1 (qij) =
d̂ij .

Note: ∀i : d̂ii = 0d̂ is a matrix (figure 23) with the estimated distances for d̂ij = µ̂i− µ̂j .
Hence d̂ij = −d̂ji. But what are good estimates for µ̂i and µ̂j?

d̂ =


0 · · · d̂ij

0
... 0

...
d̂ji 0

· · · 0



Figure 23: d̂, note that dji = −dij and the diagonal is 0.

We have n(n−1)
2 pairs, that means we have (n − 1) free parameters. This means we will not be able to

determine the x-shift. This shouldn’t bother us too much, since we are only interested in the difference
between µi and µj anyway.
A method for minimizing (thus optimizing) the error in our estimates we can use the least squares estimate
(LSE).
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10.2 Least Squares Estimate
The idea of the least squares estimate is to minimize the sum of all squared differences.

Q = 1
2

∑
j

∑
i

(
µ̂i − µ̂j − d̂ij

)
So we want to minimize Q with respect to µ̂i and µ̂j .
This can be done easily by taking the first derivative and setting it to 0.

∂Q

∂µ̂k
=

∑
j

µ̂k − µ̂j − d̂kj

−(∑
i

µ̂i − µ̂k − d̂ik

)
= 0

⇔

∑
j

µ̂k − µ̂j − d̂kj

+

∑
i

µ̂k − µ̂i +d̂ik︸ ︷︷ ︸
Remember: dij=−dji

 = 0

⇔

∑
j

µ̂k − µ̂j − d̂kj

+
(∑

i

µ̂k − µ̂i − d̂ki

)
︸ ︷︷ ︸

twice the same

= 0

⇔ 2
(∑

i

µ̂k − µ̂i − d̂ki

)
= 0

⇔
∑
i

µ̂k − µ̂i − d̂ki = 0

⇔ nµ̂k −
∑
i

µ̂i −
∑
i

d̂ki = 0

⇔ µ̂k −
1
n

∑
i

µ̂i = 1
n

∑
i

d̂ki

We end up with n equations (one for each k) in n unknowns. However the system’s rank is n− 1, so the
system of equations is underdetermined. This means that to solve it we are free to choose something as
we want, and obviously we set the average of the µis to 0 and get a nice formula to calculate the average
over all distances, µ̂k.

1
n

∑
i

d̂ki
!= 0⇒ µ̂k = 1

n

∑
i

d̂ki

Simple example

We have three normal distributions i, j, and k with the means µi = 1, µj = 0, and µk = −1 (figure 24).
For these distributions we can simply derive the matrix d and calculate the average distance between two
plots.

d =

 0 1 2
−1 0 1
−2 −1 0



µi = 1
n

∑
l

dil = 1
3 (di1 + di2 + di3) = 1

3 (0 + 1 + 2) = 1
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Figure 24: Three normal distributions i, j, and k.
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11 Choice Models II
11.1 Thurstone Scaling
In 1920 Thurstone thought about measurements in Psychology. He conducted an experiment where he
asked the subjects whether they think that one crime is more serious than another. Of course there
exists no such thing like a crime-seriousness scale, but by comparing all pairs of answers, Thurstone could
construct one.

This technique is also used in the Elo rating (famous amongst chess players) or the similar X-Box’s
Trueskill. These scales are used to match players of equal skill. The problem is, that you lack enough
data to apply our method (you will never have a nearly complete matrix of all X-Box players competing
against each other in one specific game). Good thing: we do not need the whole matrix! For subsets of
the matrix we can predict new matches based on common past enemies. And (considering the X-Box
setting) the matchmaker can also optimize their information by matching the right people together. But
how do we know, that all this rating is formally correct?

11.2 A little bit of Measurement Theory
Consider the problems of an IQ-Test. You lack a concrete scale for the intelligence of a person as well as
a ’suitable’ opponent for a match up. The solution: to match the subject against the test items.

0 2 4 6 8 100

0.1

0.2

0.3

0.4

IQ

Subject1
Subject2
Subject3

Figure 25: Performance of 3 subjects in an IQ-Test.

The test items mark thresholds similar to signal detection theory: you answer a question correctly and
you are right of it, you fail you are left. Now it is possible to calculate simultaneously the position of the
thresholds on the IQ-scale, as well as the IQ-scale itself (we do not discuss how to do this in detail).

What are the underlying assumptions of our “Measurement Model”?

Obviously we assume some kind of ordering between the different items. There is a fancy word for this:
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11.2.1 Weak Stochastic Transitivity

If µi ≥ µj , µj ≥ µk then µi ≥ µk. In this case transitivity holds. We can rewrite this:

µi − µj ≥ 0︸ ︷︷ ︸
dij

, µj − µk ≥ 0︸ ︷︷ ︸
djk

⇒ µi − µk ≥ 0︸ ︷︷ ︸
dik

⇔ pij ≥
1
2 , pjk ≥

1
2 ⇒ pik ≥

1
2

So weak stochastic transitivity is about ordering of the different choices, but is less restrictive about the
values. This constraint is exploited by:

11.2.2 Strong Stochastic Transitivity

If we know that choice i is preferred over choice j and j is chosen over k, the resulting choice probability
of i over k can not be less than the maximum of the single probabilities:

dij ≥ 0, djk ≥ 0⇒ dik = dij + djk ≥ max(dij , djk)

pij ≥
1
2 , pjk ≥

1
2 ⇒ pik ≥ max(pij , pjk)

Strong stochastic transitivity may be violated in the case where the variances of the different choices
differ:

0 2 4 6 8 10 120

0.1

0.2

0.3

IQ

k
j
i

Figure 26: A problem for strong stochastic probability

In this case pij = 0.6, pjk = 0.95 but pik = 0.85 which is less than the maximum of the other probabilities
0.95! But we can also think of different examples where the whole concept of transitivity is questionable.

Is transitivity reasonable?

Assume a situation of three chess players A,B, and C. A more often beats B than losing against him, B
more often beats C but C also more often beats A than losing against her. This scenario is visualized in
figure 27. If we try to find Gaussian distributions for each player’s utility it gets clear quite quickly, that
we will fail, since we don’t know “where” to put the µ for the last competitor: left or right of the other
two?
It seems our measurement model is not appropriate for this kind of situation. But how can we decide
whether our model is appropriate or not?
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A B

C

Figure 27: Three chessplayers dominate each other in a cyclic way.

11.2.3 Restle’s Choice Model

Another model that does not assume one dimensional scaling for choices was proposed by Restle. In 1961
he showed with a gedankenexperiment why our previous model is maybe not that accurate and intuitive
as it first sounded. Consider the following setting: we would like to go on holiday and have the following
alternatives:

• Rome

• Paris

• Paris + an apple

If we are indifferent between Paris and Rome (p21 = p12 = 1
2 ) – what is p32? Actually the one extra

apple should not change our basic decision between Paris and Rome, so p32 ≈ 1
2 , but strong stochastic

transitivity would predict p32 = 1! So if our previous model would be right every travel agent could
simply persuade you to book any vacation by simply having an apple at hand.
Restle proposes a binary feature vector that describes each option. Ours look like (Paris,Rome,Apple):

Rome : f1 = (0, 1, 0)
Paris : f2 = (1, 0, 0)
Paris+ an apple : f3 = (1, 0, 1)

Each feature has a utility µ1, µ2, µ3 and the probability to choose one over the other is dependent on the
sum of all the features one choice has compared to the other. In the following formula m is the dimension
of the feature vector.

pij ∝
m∑
k=1

µk(fik − fik · fjk) = uij

pij = uij
uij + uji

Let’s calculate the probability with which we choose Rome over Paris:

p12 =
∑3
k=1 µk(f1k − f1k · f2k)

u12 + u21

= µ2

µ2 + µ1
= 1

2 , if µ1 = µ2

Now we calculate the interesting choice Paris+Apple over Rome:

p31 =
∑3
k=1 µk(f3k − f3k · f1k)

u31 + u13

= µ1 + µ3

µ1 + µ3 + µ2
≈ 1

2 , since µ3 << µ2

So Restle’s model can predict this scenario much better.
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12 Everyday Predictions
Galton (1907) went to a fair and observed a simple guessing game. There was a bull displayed and you
could get a price if you guessed the right weight of it. Galton had a look at all guesses and found, that
the knowledge of the mass could display the real value for the bull’s weight (1198 lbs) pretty good as can
be seen in the following graph:

5% 95%

1074 12931207
median

Figure 28: A popular fair game: guess the bull’s weight. The wisdom of the crowds leads to quite a good
solution.

Note: Another famous exam-
ple: the German Tank Problem.

In 2006 Griffiths & Tenenbaum did a “simple” Bayesian inference with
“real-world” priors and only one data point. An example for this is the
distribution of age of death of men in Germany.

80 85 100600

Figure 29: Example distribution of men’s age of death in Germany.

Assume the following two scenarios.

• You meet someone who is 25 years old. When will he die? In this case you have to go with your
prior, which then is your posterior.

• You meet someone who is 85 years old. When will he die? Every age below 85 is now not possible
any more, you have to update your prior.

When X is the total value and Y the observed value, P(X) is our prior. It follows that:

P (Y = y|X = x) = 1
X
· I(y ≤ x) → I is 1 if y ≤ x; 0 otherwise

P (X = x|Y = y) = P (Y = y|X = x) · P (X = x)
P (Y = y)

=
1
X I(y ≤ x)p(X = x)∫∞

−∞
1
X I(y ≤ x)p(X = x)dx

=
1
X I(y ≤ x)p(X = x)∫∞

y
p(X=x)
X dx
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