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Probabilistic Robot Localization in Continuous 3D Maps
Robot localization in known environments is an important topic, especially in the field of

mobile robotics. Whenever a robot is turned on or relocated, it has to (re)locate itself in
its environment. Several approaches exist for robots to find their three-dimensional pose in
two dimensional raster maps. A popular algorithm for the localization task is the Augmented
Monte Carlo Localization (AMCL) which is described in details by Thrun et. al. [TBF05]. A
localization is successful when the robot found its current three dimensional pose, that is its two
dimensional position and its one dimensional orientation.

Mobile robots have to work not only in two, but also in three dimensional environments. This
means they can have six dimensional poses because their position consists of three dimensions
and so does their orientation. In this thesis I will derive an algorithm based on AMCL to solve
the localization problem in such three dimensional environments and find the six dimensional
pose. Therefor I will no longer use raster maps but polygon meshes as continuous maps. For
the sensor model I will use a ray tracer, which simulates sensor data comparable to real world
distance sensors like laser scanners or depth cameras.

After deriving the algorithm and running some simulations with it, I will take a look out
about how the algorithm can be developed further.
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Chapter 1

Introduction

1.1 Kidnapped robot

Let’s assume for a second you get kidnapped: Some dark clothed men blindfold you, drag you
into their car and drive around in confusing circles before they release you at a completely
different place. Luckily you get your hand on a hand radio and when the bad guys leave you to
die, you are able to tell your friend (luckily a ham radio operator) where you are, so that she
can pick you up: You look around and tell her what you see. The big tree over there, the coffee
shop at that corner. Your friend finds several similar locations on her map, so she asks you to
go a few more steps and tell her what you see. After telling her about the bakery next to the
coffee shop and a small park across the street she is finally able to locate you, jumps into the
car and fetches you.

This scenario is quite common for mobile robots. In the annual RoboCup, a scientific com-
petition in which robots play football [Rob08], robots are often relocated by a referee [TBF05].
They then have to realize that they have been relocated and determine their new position to
continue efficient play. If there are ambiguous possible positions, they can simply move to get
rid of uncertainties, as described in the example above.

A similar situation occurs for every mobile robot which is turned on. If they are supposed
to drive around a factory (or a floor in the computer science department) they first have to find
out where they are. This is a little bit easier than the first scenario, since a robot doesn’t have
to find out that it was relocated—it is sufficient to find the current position.

The situation of relocating a robot and thus forcing it to redetermine its position is called
kidnapped robot problem [TBF05]. It is an extension to the global localization problem. The
global localization problem just needs to find the initial pose, while the kidnapped robot first
has to realize its kidnapping—it might still assume that it is right on its original course while it
was carried away.

1.2 Idea and motivation

There are several algorithms which solve localization problems in two dimensional maps locally
or globally. A very popular algorithm, which is also capable of solving the kidnapped robot
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2 Chapter 1. Introduction

problem, is Monte Carlo Localization [DFBT99]. One variant, the Augmented Monte Carlo
Localization (AMCL), can be found in Probabilistic Robotics [TBF05].

For this algorithm, environments are represented as 2D maps. This is useful for many real-
life applications, since many robots operate in more or less flat environments. Although it is
sufficient for most environments to represent them in a 2D map, environments with altitude
differences (e.g. factories with ramps or normal houses with stairs) are hard to represent this
way. Also robots which are capable of moving in more than two dimensions, e.g. flying robots,
could benefit from more information than just 2D maps. However, there are few approaches
to locate robots in 3D environments. Therefore I will derive an algorithm based on the classic
AMCL to localize a robot in an arbitrary 3D environment. I will show that the algorithm works
up to a certain point but is not stable, thus once it is close to the real pose, it loses track and
becomes unstable.

Probabilistic Robot Localization
in Continuous 3D Maps



Chapter 2

Robot localization and Bayes filters

2.1 Robot localization

Robot localization is the process of determining a robot’s pose in a known environment. A
common application for it is to find the starting position for planning algorithms. Thrun et
al. distinguish between three different kinds of localization problems: Local localization, global
localization, and the kidnapped robot problem [TBF05]. The local localization problem keeps
track of the robot’s pose from a known initial pose and is considered the easiest problem of the
three, since the error rate in position tracking is small and efficient algorithms exist to reduce it
even further, like the Kalman filter and its derivatives [TBF05]. The global localization problem
deals with finding the pose in a map without knowing the initial pose. It is an extension to
the local localization problem and more difficult. But once the robot has found its pose, the
problem degenerates into a local localization problem. However, when the robot is relocated
by someone, it loses track of its pose. This is the kidnapped robot problem, which is the most
difficult of the three localization problems.

All three problems have in common that they need a suitable environment representation,
a map of the robot’s whereabouts. There is a similar class of problems which are referred to as
Simultaneous Localization and Mapping (SLAM) problems. In these scenarios there is no prior
map given, which makes the problems even more difficult.

2.2 Bayes filters

A good way to model localization problems are Bayes filters. They make use of Bayes’ theorem
to calculate the probability of a pose x at time t by accounting for the probability at time t− 1
and the likelihood of the current pose. This makes it possible to derive a state estimation from
the data and a likelihood alone. The Bayes’ theorem is as follows:

P (X|Y ) = P (Y |X)P (X)
P (Y ) (2.1)

In this equation, P denotes the probability density function (PDF) of a random variable.
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4 Chapter 2. Robot localization and Bayes filters

1/P (Y ), commonly called η, is the normalization factor. It is usually derived by marginalization:

P (Y ) =
∑
i

P (Y |xi) (2.2)

In a continuous approach the sum is replaced by an integral, but for the algorithm in this thesis
the discrete version is sufficient. P (X) is the prior, a previous assumption. The likelihood, the
last factor needed for the calculations, can be found in P (Y |X). One can read it as the probability
of Y given X, that means the probability of event Y when event X was observed. The likelihood
is a very important part of the algorithm and will be described in detail in Algorithm 5.5. All
together Bayes’ theorem is used to calculate the posterior probability of X given Y . That is the
probability that event X happens when event Y is observed. In other words this means that the
current probability for X given Y is derived by calculating how likely event Y is, given event X
regarding X’s sole probability.

It should be noted that throughout the rest of this thesis, prior and posterior probabilities
will be called prior and posterior beliefs, respectively. This terminology has a simple reason:
Although a robot does not have beliefs as we use the word in terms of human thoughts, it fits
the context better. Probability might imply that the algorithm would try to predict the robot’s
future position—belief on the other hand describes a theoretical possible current state.

By using Bayes’ theorem over several time steps, it is possible to implement a Markov chain
model. A Markov chain model describes a system in which the Markov assumption holds, which
says that the state of a system at time t can be calculated by just knowing the state at time
t− 1 but no other states, thus being independent from the others.

1 bayes filter
2 best belief = 0
3 best guess = null
4 while true do
5 foreach xt do
6 bel(xt) = η likelihood(xt) bel(xt−1)
7 if bel(xt) >best belief then
8 best belief = bel(xt)
9 best guess = xt

10 end
11 end
12 end
13 end

Algorithm 2.1: Bayes filter

This simple Algorithm 2.1 is the basic form of a Bayes filter. Its purpose is to find a
state estimation by updating the beliefs (bel(xt)) for each state x during every time step t and
eventually converging to a value close to the true value. This is done by using the former
posterior beliefs as priors for the new posterior beliefs. The state with the highest belief is the
likeliest.

Probabilistic Robot Localization
in Continuous 3D Maps



2.2. Bayes filters 5

2.2.1 A one dimensional example

A popular example for demonstrating Bayes filters is the door example, which is illustrated in
Figure 2.1. A robot which can only move in one dimension and only sense whether it is in front
of one of many indistinguishable doors or not shall localize itself in a corridor.

At the time of initialization the robot has no information, thus its believe to be at a specific
position is uniformly distributed (see Figure 2.1(a), bel(x)).

After the initialization the robot uses its sensor to search for a door. It finds out that in fact
it is located in front of one, so it applies a high likelihood for all positions which are in front
of doors (see Figure 2.1(b), p(x|z) where z corresponds to sensor measurement). Now the prior
belief bel(x) and the likelihood p(z|x) are used to calculate the posterior belief p(x|z), which is
again called bel(x).

p(x|z) = η p(z|x) bel(x) (2.3)

A repeated measurement would add little information to the robot’s belief. So the best
solution to get more information is to move around a little and check for doors again. This can
be seen in Figure 2.1(c). Especially noteworthy is that the bel(x) distribution is flattened a little
bit. This is done to account for inaccuracies in the movement of robots.

During the next time step Formula 2.3 will be used again, with the new normalized belief and
a new measurement. Since the robot again senses a door the robot first assigns high likelihoods
for the doors, it then calculates the posterior belief. This leads to a considerable high value for
the position close to the second door, we say the pose estimation converges to the real value.

During the next movement the bel(x) distribution flattens again, until the robot senses a
new door. With the new information about this landmark the robot will be able to update his
beliefs accordingly.

Probabilistic Robot Localization
in Continuous 3D Maps



6 Chapter 2. Robot localization and Bayes filters

Figure 2.1: Markov localization: A one dimensional corridor with indistinguishable doors. From
[TBF05].

Probabilistic Robot Localization
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Chapter 3

State of the art

The distinction between local localization, global localization and the kidnapped robot problem
is often not enough to describe localization problems. To allow for more precise classifications,
Thrun et al. also distinguish algorithms in two other categories: Which type of environment is
approached and how it is approached [TBF05].

Environments can either be static or dynamic. That means they either stay the same or
they change over time and thus makes them harder to navigate. Still most real-life applications
in robotics deal with dynamic environments, some examples include opening or closing doors,
people walking through the robot’s path and many more. Even changes in the environmental
lighting can cause the robot’s sensor data to yield very different results.

The last metric, the kind of approach chosen, is to distinguish between active and passive
approaches. A passive approach is used whenever a robot has some tasks to do and just keeps
track of its position while doing them. An active approach controls the robot towards poses
which should help in improving the pose hypothesis (the best guess pose), thus reducing the
localization error.

Depending on the different characteristics of localization problems there are different algo-
rithms to solve them. In general one can say that algorithms capable of solving kidnapped robot
problems are also capable of solving global and local localization problems, while algorithms
only designed for local localization problems will not be able to solve global localization nor
kidnapped robot problems. It is also the case that algorithms for dynamic environments can
solve the problems they are designed for in static environments as well.

3.1 Sample based localization: Particle filters

One popular approach to solve localization problems are particle filters. Instead of representing
PDFs as continuous functions as it was done in the 1D example in Section 2.2.1, a particle
filter represents a distribution by a set of samples drawn from it. This allows to represent more
distributions than continuous models do [TBF05]. The probability of a sample to be drawn is
determined by the underlying distribution. Thus a set of samples is just a discrete approximation
of the real distribution.

Particle filters are basically an extension to Bayes filters. Each sample has a belief of how
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8 Chapter 3. State of the art

likely it is that it can be drawn from the distribution. A particle filter uses the beliefs of each
sample from the last time step as priors to calculate their posterior beliefs of the current time
step. Being filters, these algorithms discard samples with low beliefs and replace them with new
random samples after each iteration [TBF05]. This way the samples are kept which are the best
approximation of the distribution.

3.2 Augmented Monte Carlo Localization
As shown in Figure 2.1, the pose of a mobile robot can be described by a PDF. By using the
ability of a particle filter to approximate distributions it is possible to approximate the robot’s
pose, hence locate the robot. In this case the particle filters implement a motion model to
change the samples according to the measured robot motion and a sensor model to provide a
simulation of the sensor data, i.e. to determine what sensor data each sample would expect. By
comparing each sample’s simulated sensor data from the sensor model with the real sensor data
it is possible to come up with a likelihood for each sample. After calculating the posterior beliefs
for each sample, the unlikeliest are replaced by new random samples. These kind of algorithms
are called Monte Carlo Localizations (MCLs).

1 Monte Carlo Localization ()
2 foreach sample do
3 sample.apply motion model()
4 sample.apply sensor model()
5 end
6 foreach sample do
7 if sample.belief < θ then
8 sample.replace sample()
9 end

10 end
11 end

Algorithm 3.1: The basic MCL algorithm.

MCL offers different possibilities of adjustments. For instance the motion model and sensor
model have to be replaced with suitable variants. Another adjustment is done by Augmented
Monte Carlo Localization (AMCL). AMCL adapts the number of samples depending on the
overall likelihood of the current samples. That means, that if there are many samples with high
beliefs, fewer samples will be generated than in the case that there are only samples with low
beliefs. This helps to maintain a stable amount of samples around the likeliest samples without
losing the ability to recover from a sudden relocation [TBF05].

Probabilistic Robot Localization
in Continuous 3D Maps



Chapter 4

Software, tools and project setup

For the implementation of the algorithm presented in this thesis several tools were needed. A
complete list of tools and where to get them can be found in the appendix.

The most important tool was the Robot Operating System (ROS), initially released 2009
by Quigley et al. [QCG+09] The version used for this project was released September 4th, 2013
under the codename Hydro Medusa. It runs best under Ubuntu 12.04 LTS (Precise), which
was subsequently chosen as the operating system.

ROS provides several advanced tools to write and build software around robots. Small pro-
grams and tools are organized in packages and can be run as small individual applications, called
nodes. These nodes connect to a local ROS master server which handles the communication be-
tween them. The communication basically works after the publisher-subscriber principle, where
some nodes publish certain messages on a certain channel (called topic) and other nodes can
subscribe to these channels. Another form of communication is the service-client principle. In
this situation one node offers a service, for which other nodes can send requests and receive an-
swers. Additionally to the basic functions there are also many convenience tools built-in to ROS,
for example there exist extendable packages for visualization or dynamic node configuration.

The ray tracing, as described in Chapter 5, is implemented as a ROS service node. Other
nodes can request ray traces at specific poses in a predefined polygon map and get the resulting
point cloud as an answer. A simple ray tracer implementation is given with the support of Com-
putational Geometry Algorithms Library (CGAL) to perform fast intersection calculations. The
resulting point cloud is evaluated with help of Fast Library for Approximate Nearest Neighbors
(FLANN).

For the preprocessing of the maps the Las Vegas Reconstruction Toolkit (LVR Toolkit) is
employed. The maps are polygon meshes created from points clouds and optimized with the
LVR Toolkit as described in [Wie13].
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10 Chapter 4. Software, tools and project setup

Figure 4.1: An example polygon mesh of an office corridor at the Institute of Computer Science.

Probabilistic Robot Localization
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Chapter 5

Augmented Monte Carlo
Localization in six dimensions

Mobile robots have to work in 3D environments. Such environments can be represented by
continuous maps in which robots need to be able to locate themselves. The algorithm Augmented
Monte Carlo Localization in six dimensions (AMCL6D) is designed to solve the localization
problem in this kind of maps.

AMCL6D is a modification of the AMCL algorithm presented in [TBF05]. Three major
components are changed: The motion model, the sensor model, and the evaluation function.
The motion model (Algorithm 5.2) supports motion in six dimensions and updates the pose
samples accordingly. The sensor model (Algorithm 5.3) is implemented by a ray trace algorithm.
This sensor model allows for simulated scan values in the 3D polygon map. Simulated scans
are needed for the last changed major component, the evaluation function (Algorithm 5.5). The
evaluation function employs a k-Nearest Neighbors (k-NN) algorithm to determine the average
distance of the real sensor data to the sensor model. Additionally the sample respawn mechanism
was slightly modified. Instead of keeping a varying amount of samples depending on the overall
likelihood, a static amount of samples is kept. However, if new samples need to be spawned,
some of them are spawned close to samples with high beliefs instead of being spawned randomly.

Before the iterative AMCL6D algorithm starts, the program generates n random samples
Xt=0. They are uniformly distributed across the map, as described in Section 5.4.1. Initially
every sample gets assigned with a probability of 1/n. As soon as some motion is detected,
Algorithm 5.1 starts the first iteration and updates the samples Xt−1 to Xt.

The update procedure consists of several steps. First the motion model (Algorithm 5.2)
will be applied to each sample, moving them according to the detected motion. After that,
each sample’s sensor model needs to be updated. This is done by ray traces as described in
Algorithm 5.3. The ray tracer can be adjusted to match any kind of distance sensors, and it has
to be adjusted accordingly. The results from the ray traces get evaluated to derive the likelihood
for each sample.

The samples’ likelihoods and their probabilities are used to calculate their posterior prob-
abilities. Before the last step the samples are sorted according to their posterior probabilities.
Their order determines if and how they are respawned: The unlikeliest samples are discarded

11



12 Chapter 5. Augmented Monte Carlo Localization in six dimensions

1 AMCL6D (Xt−1, ut,mt)
/* Initialize */

2 Xt = Xt−1
3 init θrand, θclose, θprob

/* Update motion and sensor model */
4 foreach x ∈ Xt do
5 x.pose = motion model(x.pose, ut)
6 x.raytrace = sensor model(x.pose)
7 x.likelihood = evaluation(x.raytrace,mt)
8 end

/* Find normalization constant η */
9 η = 1∑

Xt

(x.likelihood · x.probability)

/* Calculate posterior probabilities */
10 foreach x ∈ Xt do
11 x.probability = η · x.likelihood · x.probability
12 end

/* Resampling */
13 sort(Xt)
14 foreach x ∈ Xt ∧ x /∈ Xt,best do
15 random = rand()
16 if random < 1− θrand then
17 x = resample random()
18 else if random < 1− θclose then
19 x = resample close(x,Xt)
20 else if x.probability < θprob then
21 x = resample random()
22 end
23 end
24 return Xt

25 end

Algorithm 5.1: AMCL6D

and for each of them a new sample is generated.
The algorithm has three input parameters. First the samples from the last time step Xt−1,

which will be updated to Xt during the algorithm. Each sample x ∈ Xt has a pose (x.pose),
a probability (x.probability), a likelihood (x.likelihood), and a point cloud (x.raytrace). The
pose and the probability are initialized during the sample generation, while the likelihood and
point cloud get assigned later.

To update the samples according to the motion model, the robot motion ut between times

Probabilistic Robot Localization
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t − 1 and t is needed. This is usually supplied by odometry data. The last input parameter is
the measured sensor input mt in form of a point cloud, that is a collection of points which get
compared to the sensor model simulation.

Additionally to the input parameters there are a few global parameters to tweak the algo-
rithm, namely θrand, θclose, and θprob. They are thresholds used to determine which samples get
regenerated and how.

5.1 Motion model

1 motion model (x.pose, ut)
2 noise = generate noise(Σ)
3 x.pose.position+ = ut.position+noise [0 . . . 2]
4 qyaw = new QuaternionAboutAxis(ZAxis, noise [3])
5 qpitch = new QuaternionAboutAxis(YAxis, noise [4])
6 qroll = new QuaternionAboutAxis(XAxis, noise [5])
7 x.pose.orientation = qroll · qpitch · qyaw · ut.orientation−1 · x.pose.orientation
8 return x.pose

9 end

Algorithm 5.2: Motion model

Real sensors are subject to noise. Whenever a robot moves or turns around, its odometry
data will have some errors. To update the pose samples accordingly, the motion model in
Algorithm 5.2 has to describe these uncertainties as well.

Therefor it makes use of a covariance matrix Σ, which stores how the error values of the
sensors are related to each other. There are different relations for every robot, so the correct
values have to be estimated or determined empirically.

After any arbitrary time step the pose samples have to be updated according to the robot’s
movement, i.e. the motion model. It adds the difference between the start and goal pose (i.e.
the movement) to the current pose and additionally some noise values which are drawn from
a multivariate normal distribution. The distribution is around the origin and its variances are
taken from the covariance matrix Σ mentioned above.

An illustration can be found at the 2D example in Figure 5.1. The initial pose pt−1 at time
t − 1 gets updated with the motion ∆p and the noise drawn from the normal distribution. It
is more likely for the final pose pt to be close to the original motion. Since multivariate normal
distributions do not have analytical cumulative distribution functions (CDFs) (which could be
inverted to sample from them), one has to use some other techniques to sample from them. A
very common approach is described by James E. Gentle [Gen05]. It generates samples with the
following formula:

n = CT z + µ (5.1)

Here z is a vector of independent and identically distributed (i.i.d.) random values drawn
from one dimensional standard normal distributions. The vector z gets right-multiplied to the

Probabilistic Robot Localization
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14 Chapter 5. Augmented Monte Carlo Localization in six dimensions

pt−1

∆p

pt

x

y

Figure 5.1: The motion model updates the pose sample p by adding the motion ∆p and some normal
distributed noise (using the identity matrix I as deviations). The sample has a high likelihood to be at
the dark red area, though it can be in the outer areas as well.

matrix CT , which is the Cholesky factorization of the covariance matrix (such that CTC = Σ).
This adjusts the sampled values to fit the multivariate normal distribution. Lastly, the µ-vector
gets added in order to shift the means to the correct positions.

Contrary to the classical AMCL, in AMCL6D not only three but six random values are drawn
for each pose sample. The first three values simply get added to the position: (xt, yt, zt)T =
(xt−1, yt−1, zt−1)T + ∆p + (n1, n2, n3)T , where n1 describes the first element of the vector n,
the sampled noise. Since the robot’s covariance matrix uses Euler angles but the orientations
are handled by quaternions, the values for the rotation can not simply be added. Instead they
are used to create new quaternions qyaw, qpitch, and qroll to express rotations about the yaw,
pitch and roll axes respectively (in Algorithm 5.2 the ROS coordinate system is used). These
three rotations get multiplied with the updated orientation (that is qt−1 rotated by the inverse
of the orientation difference ∆q−1): qt = qroll · qpitch · qyaw ·∆q−1 · qt−1. Note that quaternion
multiplication is non-commutative, so the order is important: The right-most rotation is done
first. This order of rotations results in the traditional three body rotation inspired in aviation:
First an airplane is able to yaw, when it starts it pitches and in the air it is additionally able to
roll.

Putting the position and orientation together the pose sample for time t is updated with the
correct noise values.

5.2 Sensor model

The sensor model, illustrated in Algorithm 5.3, is an exchangeable component of AMCL.
AMCL6D is working on continuous polygon maps, which require a suiting form of sensor models.

Probabilistic Robot Localization
in Continuous 3D Maps



5.2. Sensor model 15

1 sensor model (x.pose)
2 raytrace = raytrace at(x.pose)
3 raytrace = normalize raytrace(raytrace, x.pose)
4 return raytrace
5 end

Algorithm 5.3: Sensor model

For AMCL6D the sensor model is implemented as a ray tracer. This allows to simulate accurate
sensor data in the form of point clouds in continuous maps.

The ray tracer used in AMCL6D calculates the intersections of rays emanating from the
robot’s position with the map. Since laser scanners, cameras, or other sensors do not only emit
a single light ray, the ray tracer for AMCL6D also needs to test many rays.

Since the rays are supposed to simulate a camera, they are cast through an image plane.
This helps to determine a second point to construct the rays: The image plane will be divided
into small cells, depending on the simulated resolution. One ray is cast through each of these
cells and for each of them it has to be checked whether it intersects with the map or not. If
it does, the intersection point is stored into a point cloud. The ray tracing is illustrated in
Figure 5.2. The image plane is calculated with the aperture angles (θ for the horizontal and φ

y

z

x

0
0

0

(F , ymin, zmax)

(F , ymax, zmin)

(0, ymin, zmin)

cbl

cbr

ctr

ctl

Cam (0, 0, 0) φ

θ

F

h

w

Figure 5.2: Calculation of the virtual image plane for the ray tracing.

for the vertical aperture angle, measured in radians) and the focal length (F ) of the simulated
sensor. It is described by the intersections of its four edges and gets divided into cells according

Probabilistic Robot Localization
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16 Chapter 5. Augmented Monte Carlo Localization in six dimensions

to the horizontal and vertical resolution of the sensor. To calculate the intersections in the
virtual image plane, the following formulas are used.

ymin = F · tan−θ2 (5.2)

ymax = F · tan θ2 (5.3)

zmin = F · tan−φ2 (5.4)

zmax = F · tan φ2 (5.5)

Thus, the image plane’s corners are cbl = (ymin, zmin), cbr = (ymax, zmin), ctl = (ymin, zmax), and
ctr = (ymax, zmax). The cell size (width and height) is calculated with w = |cbr− cbl|/reshor and
h = |ctl − cbl|/resver, with reshor being the horizontal and resver the vertical resolution.

However, algorithmically it is not necessary to calculate all these points or individual cells.
ymin/max, zmin/max and the cell size of the image plane’s cells, w and h, are already enough to
iterate over the plane and cast a ray for each cell with Algorithm 5.4. The resulting intersections
are stored into an array of points which is called point cloud.

1 y = ymin
2 z = zmin
3 while y ≤ ymax do
4 while z ≤ zmax do
5 transform (y, z) relative to pose
6 cast ray from pose.position through (y, z), store intersection
7 z+ = h

8 end
9 y+ = w

10 end

Algorithm 5.4: Iterating the virtual image plane to cast rays through each cell. The
transformation is achieved with the inverse of the matrix representing the pose, as described
in Formula 5.6 and Formula 5.7.

To speed up the intersection checks, the CGAL offers the ability to build an Axis-Aligned
Bounding Boxes tree (AABB tree) from the map data [ATW14]. The AABB tree stores the
mesh faces of the polygon map in axis-aligned bounding boxes. Axis-aligned bounding boxes are
cuboids with all their edges parallel to the corresponding axis of the global coordinate system.
They AABB tree organizes them in a tree structure, this makes it faster to process the data.
The speed up is achieved by checking for an intersection of the ray with a bounding box before
calculating the exact intersection with the encased geometry. Additionally the fact that the
bounding boxes are axis-aligned helps with the speed up, it allows for only simple predicate
calls [ATW14]. Figure 5.4 pictures an example ray trace showing the simulated robot’s pose
(arrow) and the point cloud which resulted from the ray trace at that pose. To be able to compare
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Figure 5.3: Axis-aligned bounding boxes encasing a simple mesh consisting of three triangles.

Figure 5.4: A simulated ray trace sample.

the point cloud generated by the ray trace with the point cloud from the sensor, they need to be
in the same reference frame. This means they both have to be transformed in a way such that
their origins are at the same point. AMCL6D uses the global origin. To transform a pose to the
origin, it is possible to use an affine transformation matrix. This affine transformation matrix
A can be constructed easily: The orientation of the pose can be expressed by a 3 × 3 rotation
matrix R and the translation by a 3 × 1 matrix T . These two matrices can be combined and
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18 Chapter 5. Augmented Monte Carlo Localization in six dimensions

extended to a 4× 4 matrix (Formula 5.6).

A =


R1,1 R1,2 R1,3 T1,1

R2,1 R2,2 R2,3 T2,1

R3,1 R3,2 R3,3 T3,1

0 0 0 1

 (5.6)

A is the matrix which describes the transformation needed from the global origin to the pose.
By taking the inverse A−1 it is possible to calculate a matrix which describes the opposite: the
transformation from the pose back to the origin. This inverted matrix A−1 can be applied to
each point p in the point cloud result (P) from the ray trace to transform them to positions which
are relative to the origin as they were to the pose. Note that the points need to be homogenous,
that means they need to be extended with a fourth component which is 1.

∀p ∈ P :
(
p

1

)
= A−1

(
p

1

)
(5.7)

The resulting point cloud can be used to evaluate the corresponding sample in the evaluation
function.

5.3 Evaluation function

1 evaluation (x.raytrace,mt)
2 kd tree = prepare kd tree(x.raytrace)
3 average distance = ε
4 foreach p ∈ mt do
5 nearest neighbor = k nearest neighbors(p, kd tree, 1)
6 average distance += euclidean distance(p, nearest neighbor) / size(mt)
7 end
8 return 1/average distance
9 end

Algorithm 5.5: Sample evaluation

The likelihood for each sample gets calculated in the evaluation function (Algorithm 5.5).
Most of it is done with the FLANN. First the sample’s point cloud gets organized into a k-
dimensional tree (kd-tree). In the second step a k-NN search is performed for each point in the
sensor measurements to determine each respective closest neighbor.

A kd-tree is a binary tree structure which recursively splits the space and stores each subspace
into a child node of the previous one. Thus the root node resembles the whole space and the
first split plane, its child nodes contain the subspaces yielded by the split plane. This is done
until there is only one point left in a subspace, which becomes a leaf node.
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The k-NN algorithm is used to find similarities in high dimensional data [ML14]. Its purpose
is to find the k points of a dataset which are closest to a given point. The most naive version
of such an algorithm would just iterate over all points to search the k closest points, FLANN
takes advantage of the kd-tree to speed up the calculations. In AMCL6D the k-NN algorithm
is used as a heuristic to find the distance to the closest point (k = 1) in the simulated sensor
data for each point in the real sensor data. For each sample the mean distance to the real data
is calculated.

By inverting the mean distance between the real sensor data and a sample it is possible
to come up with a value between 0 and 1. This value is inverse proportional to the distance,
that means if the distance is huge the value becomes really small, but if the distance is small
the value gets closer to 1. To avoid division by zero in the unlikely but possible case that the
measurements have a distance of 0, the average distance gets initialized with an arbitrary small
value ε ∈ R > 0.

The result of the evaluation function is used as the likelihood for the calculation of a sample’s
new probability: x.probabilityt = η · x.likelihood · x.probabilityt−1. η is the normalization
constant, which is the marginalization over all posterior probabilities (see Algorithm 5.1, Line 9).
After evaluating the samples, they are sorted by their posterior probabilities. This allows for
easier regeneration of poses with low posterior beliefs.

5.4 Sample generation and regeneration

One important part of the algorithm is sampling. Not only the sampling of new poses is crucial,
it is also important that the noise in the motion model is sampled correctly.

Therefore the algorithm uses three different sampling strategies. The chosen strategy de-
pends on the use case for the sampled values. The first strategy is a uniform sampling to
generate the initial poses. The second strategy (described in Section 5.1) is used for sampling
noise according to the robot’s sensor precision to simulate an accurate motion model. The last
strategy is used to determine which poses need to be removed and where to regenerate new
samples. This process filters the poses by replacing unlikely pose samples with pose samples
biased towards the likeliest ones.

5.4.1 Generating initial pose samples

The generation of new pose samples is done by drawing random numbers from a uniform dis-
tribution. For the position there is no more work needed than mapping the sampled values into
the correct range. For a random value v from the range S the remapped value vn from the range
T gets calculated by the formula vn = Tmin + v |S||T | , where |S| denotes the length of range S (or
T , respectively) and Tmin denotes the smallest value of T . For the three needed values x, y, and
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20 Chapter 5. Augmented Monte Carlo Localization in six dimensions

z this results in the following calculations.

x = xmin + rand() (xmax − xmin) (5.8)
y = ymin + rand() (ymax − ymin) (5.9)
z = zmin + rand() (zmax − zmin) (5.10)
v = (x, y, z) (5.11)

In this equation rand() draws i.i.d. random numbers from Rs = [0, . . . , 1], the source range.
xmin and xmax (for y and z respectively) describe the target range Rt = [xmin, . . . , xmax] in which
the samples shall be generated for the respective dimension. In this thesis they correspond to
the boundaries of the map in each dimension.

By subtracting the minimum value of the source range Rs from the sampled value, the range
the random value is drawn from is shifted to zero—in this case the subtracted value would be
0, so it is left out. The value xmax − xmin is the ratio between the lengths of the two ranges
|Rt|/|Rs|. A multiplication of the shifted value and the ratio maps the value to the correct value
in a zero shifted target interval with the length of the target range |Rt|. By adding the target
range’s minimal value, xmin, the sampled value gets shifted to the correct range.

This procedure is done for each of the three positional coordinates, resulting in the positional
vector v = (x, y, z).

Sampling the orientation is done with the subgroup algorithm by Ken Shoemake [Sho95]. It
generates a unit quaternion from three uniformly i.i.d. random valuesX0, X1, X2 of the following
form:

q =
(
sin 2πX1

√
1−X0, cos 2πX1

√
1−X0, sin 2πX2

√
X0, cos 2πX2

√
X0
)

(5.12)

The generated vector v and the orientation quaternion q form the sampled robot pose. Initially
all poses get the same belief of 1/n, where n is the number of samples.

5.4.2 Regenerating samples

Sample regeneration is performed as the last step in the AMCL6D algorithm. The method used
for resampling individual particles depends on θclose, θrandom, and θprob. The thresholds θclose and
θrandom are percentages. Their sum θclose + θrandom yields the percentage of the particles which
will be regenerated. Thus if θclose = 0.15 and θrandom = 0.45, the unlikeliest (meaning those with
the lowest beliefs) 60% of the samples will be respawned, either closely or randomly, respectively.
Additionally all samples with a belief smaller than θprob will be respawned randomly.

The samples which get respawned randomly are definitely respawned, just the method how
they are respawned is similar to the initial sample generation. They get a new uniform random
pose and a belief of 1/n.

For the samples which are respawned closely another method is used. The new samples shall
be close to good samples, so first it has to be determined which pose samples are good. AMCL6D
uses a fixed number of best samples, the samples with the highest beliefs. Then for each new
sample a random sample from the best samples is chosen and used as a seed to generate a new
pose. To generate a sample nearby, the same calculations are used which are already used in
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5.4. Sample generation and regeneration 21

the motion model (see Formula 5.1), only the parameters are changed. The covariance matrix
Σ can be adjusted manually, for AMCL6D it is a slightly modified identity matrix.

Σ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 α 0 0
0 0 0 0 α 0
0 0 0 0 0 α


(5.13)

The value α is the change in orientation (in radians) we want to achieve. If for example α =
5π/180, this would result in values of ±5◦ relative to the reference sample. Of course the 1s could
also be replaced, now they resemble a standard normal distribution for the position.

n = CT z + µ (5.14)

Formula 5.14 is the same as Formula 5.1, used in the motion model. When the Cholesky
factorization of Σ is multiplied with a vector of random values and added to a mean vector µ
which holds the position of the reference sample and three 0s, the resulting values can be used
to construct a sample which is close to the reference. To do so, the position of the new pose has
to be set to the three first result values. The orientation needs to be calculated similar to the
orientation change in the motion model, by using three quaternions and rotating the orientation
of the reference pose accordingly. The resulting pose is somewhere around the reference pose,
depending on the choice of Σ this may be closer or further.
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Chapter 6

Simulation and results

The ROS package built for AMCL6D also includes a simple tool to simulate a robot pose. This
tool was used to simulate and test the algorithm. The algorithm can be visualized using RVIZ,
which is illustrated in Figure 6.1. The performance of the algorithm was tested on different
maps and with different resolutions. To assure accuracy, for each map there was a random but
arbitrary sequence of motions defined which was repeated for each trial. The simulated camera
for the ray tracing always had aperture angles of 90◦ (horizontal) and 60◦ (vertical).

6.1 Performance in different maps

The performance is measured by taking the distance between the simulated real pose and the
best hypothesis after each time step, hence lower values mean better results. For the comparisons
in these sections the euclidean distance between the poses’ positions was used, as it has greater
impact on the localization.

Elevator door

The elevator door map is open on one side and has lots of holes. It is smaller in size than the
office map, but has more vertices and faces.

The results in Figure 6.4 show that the algorithm is not capable of localizing the robot within
100 iterations. However it is interesting that the algorithm decreases the distance steadily during
the first half of each experiment but after about 50 iterations it spikes far away and has problems
to recover.

Office corridor

The office corridor map is about seven times larger than the elevator door map, however it has
less vertices and faces. This is due to its very regular structure. In contrast to the other map,
the office corridor is complete and without any holes.

The results illustrated in Figure 6.5 are worse than those of the elevator door map. In
the office corridor the algorithm was not able to localize the robot, additionally the tendency
observed in the first iterations in the elevator door map is not visible. This is most probably
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24 Chapter 6. Simulation and results

Figure 6.1: The localization of AMCL6D. The small red arrows illustrate the samples, the green arrow
the likeliest sample and the blue arrow the real value.

because the sample size of just 100 samples is really small and the map is huger than the other
one. However for larger sample sizes the computational time of the ray tracer is not acceptable
anymore, as it already was a huge bottleneck with different resolutions (see Section 6.3).
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Map and test properties
Vertex count 3,774
Face count 3,924
Iterations 100
Resolution 65x45
Approx. Dimensions 6x23x4

Figure 6.2: Map and test properties: Elevator door

Map and test properties
Vertex count 1,018
Face count 857
Iterations 100
Resolution 65x45
Approx. Dimensions 15x33x8

Figure 6.3: Map and test properties: Office corridor
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Figure 6.4: Trial results of the elevator door map. The red line shows the over all mean distance.
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Figure 6.5: Trial results of the office corridor map. The red line shows the over all mean distance.
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Figure 6.6: Mean results of trials with different resolutions.

6.2 Resolution of ray tracer
To see how much impact the resolution of the sensor model has and if there are better resolutions,
tests in the same elevator door map (Figure 6.2) with different resolutions of 100x80 (2 runs),
65x45 (5), 30x20 (5) were compared.

The mean results are illustrated in Figure 6.6. As one can see, all resolutions perform similar
and there is none which might be preferable over the others.

6.3 Ray tracing speed
The algorithm performed very slow on the medium and high resolutions. While following the
assumption that the ray tracer might be a bottleneck, the computation time of the ray tracer
was tracked to find out its portion of time used during execution of the algorithm. The results
show that the ray tracer consumes most of the algorithm’s running time, with rates varying
between 93 and 96 percent. An improved ray tracer might therefor speed up the calculations
enormously. It can also be seen in Table 6.1 that therefore smaller numbers of vertices and faces
improve the time needed for the ray tracing. Using the mesh optimization software of the LVR
Toolkit can thus lead to better results.

6.4 Summary
AMCL6D initially performed well on a small map, independently from the ray tracer’s resolution.
However, once it got close to the real value it suddenly jumps far away. This makes it less useful
in pose tracking than I initially hoped for. Additionally it was found that the ray tracer is really
slow and throttles down the whole approach. Maybe replacing the ray tracer allows for more
iterations in reasonable time frames and thus for a recovery from the loss of the pose tracking.
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Run Map Resolution Total time (s) RT time (s) RT/Total (%)

1 Elevator 65x45 2139 2037 95.23
2 Elevator 65x45 2191 2085 95.16
3 Elevator 65x45 1867 1766 94.59
4 Elevator 65x45 2250 2146 95.38
5 Elevator 65x45 2084 1979 94.96
6 Elevator 65x45 2229 2124 95.29
7 Elevator 65x45 1944 1840 94.65
8 Elevator 30x20 481 457 95.01
9 Elevator 30x20 430 407 94.65
10 Elevator 30x20 528 504 95.45
11 Elevator 30x20 407 384 94.35
12 Elevator 30x20 464 443 95.47
13 Elevator 100x80 6166 5890 95.52
14 Elevator 100x80 6012 5730 95.31
15 Office 65x45 787 745 94.66
16 Office 65x45 764 722 94.50
17 Office 65x45 803 762 94.89
18 Office 65x45 786 737 93.77
19 Office 65x45 827 786 95.04

Table 6.1: Ray trace computation time comparisons
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Figure 6.7: Comparison of the total time to ray trace time. The total execution time for each trial is
set to 1. The red area is the time consumption by the ray tracer.
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Future improvements and possible
changes

Dynamic respawn

One element of AMCL was changed in AMCL6D: The dynamic respawn rate of samples (cf.
[TBF05]). Depending on how high the belief for specific poses is, AMCL spawns more or less new
pose samples. This allows for a more fine grained control of where to regenerate new samples
and also changes the computational time needed for each iteration. If the belief for some pose
samples is very high, less samples need to be checked in total until there are some far away from
the good samples with like results. The less samples are maintained, the less computational
effort is needed. This is especially important for the ray tracer.

Ray tracer and computation times

During the tests and simulation the ray tracer was found to be by far the slowest part of the
algorithm. Improvements will most probably be achieved by replacing CGAL with a faster
library. Surprisingly it did not make a huge difference in the results which resolutions were
used, but a huge difference in computation times. So using a smaller resolution is also a way to
reduce computation times.

Evaluation function

Another very important factor is the evaluation function. As in other applications where likeli-
hoods are derived from comparisons with sensor inputs it is important to find the right evaluation
to come up with reasonable values. The method used in AMCL6D seemed to be quite reason-
able: The average distance between two point clouds would be 0 if they were equal and increases
with more points being further away from this baseline. But maybe simply another evaluation
function has to be found.
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Multiple sensors

If all these changes are done and AMCL6D turns out to work, there are still many things to
do. First of course, it should be tested on a real robot and not only in simulations. After
that it is possible to extend AMCL6D further, for example by adding a second sensor which is
directed to another direction than the first. This could help to reduce ambiguities and thus lead
to faster convergence, but also introduces more data to process. This leads to the problem that
sometimes better sensors are difficult to handle due to their different kind of data [Smi94]—or
in this case more because of the amount of data.

Conclusion
As it turned out, AMCL6D as implemented for this thesis, is not yet very effective. It comes
close to the correct poses, but loses track of it and fails to recover from the loss. However, there
is still much room left for improvements and changes, and since localization in continuous 3D
maps will stay an important topic in the future, it is worth pursuing this or similar approaches.
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List of tools and software

This is a list of tools and software used to implement AMCL6D. The links were checked before
printing the thesis, however they might not exist by the time of reading. You can still try to
search the web for the corresponding versions or hope for new versions of each library or tool to
work as well.

Tool/
Software Version Release URL
Boost 1.46.1 2011-03-12 http://www.boost.org/users/history/version_1_46_1.html

CGAL 3.9-1 2011-10-17 https://launchpad.net/ubuntu/+source/cgal/3.9-1

Eigen 3.0.5-1 2012-02-22 https://launchpad.net/ubuntu/+source/eigen3/3.0.5-1

FLANN 1.7.1-1 2011-12-20
(v1.7.0)

http://flann.sourcearchive.com/downloads/1.7.1-1/

LVR Toolkit 0.7 2013-06-06 http://www.las-vegas.uni-osnabrueck.de/index.php/download

OpenMPI 1.4.3 2010-10-05 http://www.open-mpi.org/software/ompi/v1.4/

PCL 1.7.0 2013-07-23 http://casestudies.pointclouds.org/downloads/linux.html

ROS Hydro
Medusa

2013-09-14 http://wiki.ros.org/hydro/Installation

Ubuntu 12.04.5
TLS

2014-08-07 http://releases.ubuntu.com/12.04/

University git repositories

Repository Description URL

AMCL6D AMCL6D code software@kure.informatik.uos.de/amcl6d

meshing.pg2013 RVIZ plugin software@kure.informatik.uos.de/meshing.pg2013

lvr tools LVR Toolkit software@kure.informatik.uos.de/roslvr
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